InfiniBand

an overview

/me

...

...

2022-now() Cloud Gardener, HPC/AI Taiga Cloud

2018-2022 Cloud Gardener, OpenStack, k8s, edge computing

2012-20161&1, DNS Team, System Adminpre-2012Uni Paderborn, FreelancerStudium

Abgeschlossenes Studium Mathe/Informatik für Lehramt an Gymnasien

Agenda

- history
- what is infiniband?
 - $\circ~$ speeds, connectors and cables
 - \circ topologies
 - OSI Layer
 - components
- security and the cloud

history - why is infiniband?

1999 IB 1.0 Specs

Future IO & NGIO -> IB 1.0 substitute PCI, Ethernet, FC Supporters Intel, Dell, Sun, MS, ...

- 2001 Mellanox first HW 10 GBit/s
- 2002 Intel, MS drop interest -> PCIe
- 2005 Linux 2.6.11 support via OpenIB, OFED is born
- 2005 Storage Devices
- 2005 Cisco, acquired competitors, killing vendors

history - what is infiniband and why?

- 2009 Top 500 181/500 IB 259/500 Ethernet
- 2010 only 2 independent HW vendors left Mellanox, QLogic

2014 -

2016 IB was most used in supercomputers, later replaced by 10GBit/s Ethernet

2019 only 1 independent HW vendor NVidia

speed - what is infiniband?

	Year ^[20]	Lino	aada	Signaling	Throughput (Gbit/s) ^[21]				Adapter
	Tear	Line code		rate (Gbit/s)	1x	4x	8x	12x	latency (μs) ^[22]
SDR	2001, 2003	NRZ	8b/10b ^[23]	2.5	2	8	16	24	5
DDR	2005			5	4	16	32	48	2.5
QDR	2007			10	8	32	64	96	1.3
FDR10	2011		64b/66b	10.3125 ^[24]	10	40	80	120	0.7
FDR	2011			14.0625 ^{[25][19]}	13.64	54.54	109.08	163.64	0.7
EDR	2014 ^[26]			25.78125	25	100	200	300	0.5
HDR	2018 ^[26]	PAM4		53.125 ^[27]	50	200	400	600	< 0.6 ^[28]
NDR	2022 ^[26]		256b/257b ^[i]	106.25 ^[29]	100	400	800	1200	?
XDR	2024 ^[30]	[to be determined]	[to be determined]	200	200	800	1600	2400	[to be determined]
GDR	TBA			400	400	1600	3200	4800	

https://en.wikipedia.org/wiki/InfiniBand#Performance

why is infiniband?

What we have:

- HPC & AI huge amounts of data
- memory complex computations
- memory limited computation units (eg A100/H100 80GB/GPU)

How to transfer?

Who does it?

- CPU?
- DMA?
- RDMA (CA, HCA)
- Latencies?

typical scenario:

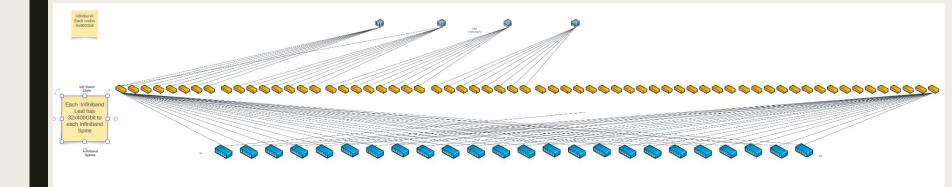
- huge amount of data on disk
- "hot" data in RAM

what is infiniband? - but why?

- low latencies guaranteed media access times
 - "access token" per P2P links
 - depending on the topology: guaranteed latency
- guaranteed delivery and ack
- RDMA remote direct memory access
- at the time of development: higher speeds than competitors

	Year ^[20]	Line code		Signaling rate (Gbit/s)	Throughput (Gbit/s) ^[21]				Adapter
					1x	4x	8x	12x	latency (μs) ^[22]
SDR	2001, 2003	NRZ	8b/10b ^[23]	2.5	2	8	16	24	5
DDR	2005			5	4	16	32	48	2.5
QDR	2007			10	8	32	64	96	1.3
FDR10	2011		64b/66b	10.3125 ^[24]	10	40	80	120	0.7
FDR	2011			14.0625 ^{[25][19]}	13.64	54.54	109.08	163.64	0.7
EDR	2014 ^[26]			25.78125	25	100	200	300	0.5
HDR	2018 ^[26]	PAM4		53.125 ^[27]	50	200	400	600	< 0.6 ^[28]
NDR	2022 ^[26]		256b/257b ^[i]	106.25 ^[29]	100	400	800	1200	?
XDR	2024 ^[30]	[to be determined]	[to be determined]	200	200	800	1600	2400	[to be determined]
GDR	TBA			400	400	1600	3200	4800	

https://en.wikipedia.org/wiki/InfiniBand#Performance


what is infiniband? - use case examples

- IB + GPU
 - physics simulations
 - particle systems
 - weather modells
 - AI
 - logistics
- only IB
 - automated stock exchange trade low latencies

IB typical topologies

- P2P links small I2 failure domains
- Clos network
- other:
 - torus networks, butterfly networks

- accumulation of path capacity
- For HPC/AI Non-Blocking xfer

L1 & connectors

OSFP

QSFP

Multimode Singlemode

DAC - Cooper

https://docs.nvidia.com/networking/display/cablemanagfaq/cable+and+connector+definitions

L2

GUID

- HCA
- CA
- Switch Ports

unconfigured L2 link, can only send datagrams eg. MAD L2 & L3 are closely entangled NVIDIA.COM Connect X7 IB HCA

what is infiniband? - L3 - Subnet Manager

Subnet Manager

- assigns LIDs
- configures ports HCAs, "switches"
- sets and programs routing into ports
- manages multicast groups
- manages partitions

what is infiniband? - L3 - Subnet Manager

Cold start/Big Sweep

• BFS/DFS, scan for connected ports

Standby/Small Sweep

• scans/listens for topology changes

L2 and L3 are closely entangled

Configuration done via MAD - Management Datagrams

what is infiniband? - L4 - QPairs

- Transport Protocol Engine in HW Queue Model (see Token based Media Access)
- Dest LID (implies Src LID)
- Modus (reliable vs unreliable, connection vs datagram)
- Packet Message sizes
- per peer DMA addresses, sizes

Usage?

typically use-case special libraries not POSIX

Infiniband vs Ethernet

- Layer 2 Infiniband
 GUID
- Layer 3
 - LID
 - routing in HW
 - use case/topology optimized routing algo
- Layer 4 QPairs

- Layer 2 Ethernet
 MAC vendor assigned
- Layer 3 IP
 - IP address DHCP/static
 - routing IP stack of OS
 - prefix routing
- Layer 4 TCP

IB terminology recap

- Devices
 - HCA
 - switches
 - (routers)
 - Ports
- Adresses
 - GUIDs
 - LIDS
- Subnet Manager
- Datagrams
 - MADs (Management Datagrams)
- QPairs

Subnet Manager

configuresDevices, Adresses, Routes per Device per Dest per Source

 \rightarrow Link-State DB

- Partitions
 - 32767 = 2^15 0000-7fff
 - special 0000, 7fff Management
 - Membership MSB full vs limited
 - Pkey-Table per port/CA
- Keys per subnet optionally per host, Subnetmanager configures this
 - MKey
 - SMKey
 - SAKey
 - PKey
 - VSKey

Subnet Manager

- detects devices GUIDs \rightarrow listens on plug events, link change events
 - sweeps, full vs small sweeps
- assigns LIDs (persistent)
- management datagrams
 - MKey!
 - SMKey!
 - pushes routing/forwarding information
 - pushes Pkey tables
- act as management hosts
 - switch config VSKey (TBD)
 - firmware updates VSKey (TBD)

Subnet Manager

configures Adresses, Routes per Device per Dest per Source

 \rightarrow Everything!

- What if it dies?
- HA? active/passive priorities
 - net split? I don't care, optimized for speed ;)

What we have: Infiniband \rightarrow L3 fabric

- P2P links small I2 failure domains
 - addresses assigned via SubnetManager
- I3 routed
 - $\circ \quad \text{bandwidth sum of all links} \\ \rightarrow \text{scales with links and leaves connected}$
 - limited by number of ports of the NIC
 - routing information distributed by MAD/Subnetmanager
 - routing in ASIC (switches/routers/bluefields) hardware
 - routing in software
- no prefix routing!
- Use-Case Cloud: tenant network isolation → partitions

IP o IB - Subnet manager

- possible :) no IPv6
- per partition
- no ARP
 - $\circ \rightarrow$ Subnet Manager handles/simulates this
 - IB Multicast groups
 - What if the subnet manager dies? Broken

Software Stack

- run the network
 - OFED / WinOFED
 - Subnet Manager: opensm vs UFM (NVidia)
- compute
 - Transfer Engine abstraction libs
 - scheduler
 - \rightarrow MPI / openMPI

(nearly) no one works with QPairs directly!

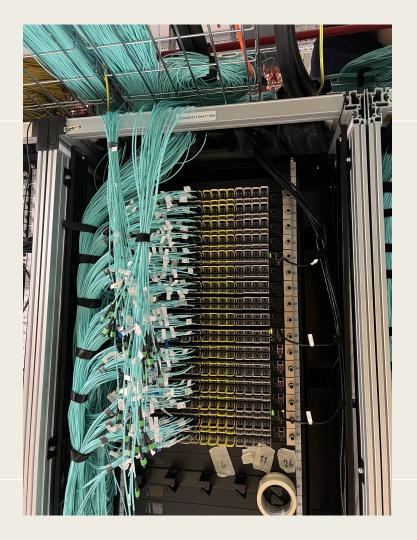
observations: Software Stack - HPC

MPI

- abstracts message passing
- ... abstracts Unicast vs Multicast
- … abstracts transfer of data structures
- ... uses transport library
- \rightarrow Transport library (no POSIX)
 - part of vendor driver bundle OFED
 - abstracts QPairs and RDMA

observations: Software Stack - Al

- on top of Docker or k8s
- typical additions layers
 - $\circ \quad \mathsf{PyTorch} \to \mathsf{NCCL} \to \mathsf{MPI}$
- Slurm which uses
- MPI
- which uses IB via OFED libs


Deployments

• Host Side, 32x 400GB

Deployments

• Leaf - Spine, 32x 400GB

Use-Case Cloud-alike

- OpenStack possible but ...
 - Nova very specific PCI Passthrough
 - Ironic?
 - BMC integration
 - overhead hell, use-case a bit different
 - lower churn
 - no IB support
- InfiniBand Tenant Network Isolation? →partitions

Learnings - security nightmares?

- Subnet Manager
 - \circ rogue subnet managers? \rightarrow keys
 - HA / priority
 - rogue "network administrators" and port config
 - if a SM is in place \rightarrow
 - MKey protect port config config changes
 - SMKey \rightarrow address and routing changes
 - ...
 - VSKey! and passive environments
 - MKey leaks
 - Who and which CAs are allowed to send MADs?

Learnings - security nightmares?

- InfiniBand Tenant Network Isolation
 - who controls the PKeyTable per port per CA
- Switch & HCA firmwares, signed
 - permissions handled by
 - port config via subnet manager
 - firmware API
 - driver in kernel
 - bug free?
 - NVMEoF & RDMA security <u>https://arxiv.org/abs/2202.08080</u>
 - trust anchor?

Learnings - Operations

- Subnet manager extremely stable
 - error messages are cryptic but often contain paths to erroneous/misbehaving devices
 - eg ... 0,1,13,44,6 ...

Learnings - Operations

- Debug, Stats and Monitoring?
 - nice toolchain
 - iblinkinfo parseable output of complete network topology
 - ibhosts
 - ibswitches
 - ibtracert
 - ibping!
 - ib_send_bw/ib_read_bw
 - opensm telemetry plugins
 - prom exporters
 - https://github.com/treydock/infiniband_exporter
 - https://github.com/guilbaults/infiniband-exporter
 - https://gitlab.cern.ch/lhcb-online/cables-info-exporter#

Sources

- InfiniBand Network Architecture, Addison-Wesley 2002
- <u>https://tin6150.github.io/psg/infiniband.html</u>

Nice to know

- NVMEoF & RDMA security <u>https://arxiv.org/abs/2202.08080</u>
- https://imbue.com/research/70b-infrastructure/

